CONTRIBUTIONS
FROM THE
CUSHMAN LABORATORY
FOR
FORAMINIFERAL RESEARCH

VOLUME 25, PART 2
June, 1949

Contents

No. 326. Some Cuban Species of Globorotalia ... 26
Recent Literature on the Foraminifera ... 45

SHARON, MASSACHUSETTS, U. S. A.
1949
These Contributions will be issued quarterly. They will contain short papers with plates, describing new forms and other interesting notes on the general research work on the foraminifera being done on the group by the workers in this laboratory. New literature as it comes to hand will be briefly reviewed.

Subscription $2.50 per year post paid.

Volume 1, April 1925—January 1926 (Reprinted, 1935) .. $3.00
Volume 2, April 1926—January 1927 (Reprinted, 1935) .. $3.00
(Volume 3, part 1 now out of print.)
Volume 3, parts 2-4, June—December, 1927 (Reprinted, 1936) $2.00
Volume 4, parts 1-4, March—December, 1928, complete ... $2.50
Volume 5, parts 1-4, March—December, 1929, complete ... $2.50
Index to Volumes 1-5 inclusive .. $1.00
Volume 6, parts 1-4, March—December, 1930, complete ... $2.50
Volume 7, parts 1-4, March—December, 1931, complete ... $2.50
Volume 8, parts 1-4, March—December, 1932, complete ... $2.50
Volume 9, parts 1-4, March—December, 1933, complete ... $2.50
Volume 10, parts 1-4, March—December, 1934, complete $2.50
Index to Volumes 6-10 inclusive .. $1.00
Volume 11, parts 1-4, March—December, 1935, complete ... $2.50
Volume 12, parts 1-4, March—December, 1936, complete ... $2.50
Volume 13, parts 1-4, March—December, 1937, complete ... $2.50
Volume 14, parts 1-4, March—December, 1938, complete ... $2.50
Volume 15, parts 1-4, March—December, 1939, complete ... $2.50
Index to Volumes 11-15 inclusive .. $1.00
Volume 16, parts 1-4, March—December, 1940, complete ... $2.50
Volume 17, parts 1-4, March—December, 1941, complete ... $2.50
Volume 18, parts 1-4, March—December, 1942, complete ... $2.50
Volume 19, parts 1-4, March—December, 1943, complete ... $2.50
Volume 20, parts 1-4, March—December, 1944, complete ... $2.50
Index to Volumes 16-20 inclusive .. $1.00
Volume 21, parts 1-4, March—December, 1945, complete ... $2.50
Volume 22, parts 1-4, March—December, 1946, complete ... $2.50
Volume 23, parts 1-4, March—December, 1947, complete ... $2.50
Volume 24, parts 1-4, March—December, 1948, complete ... $2.50
Volume 25, subscription, 1949 .. $2.50

Special Publications:
No. 1. Foraminifera, Their Classification and Economic Use. 1928 $5.00
No. 2. A Resume of New Genera of the Foraminifera Erected Since Early
1928. 1930. ... 50
No. 3. A Bibliography of American Foraminifera. 1932. $1.10
(No. 4: Foraminifera, Their Classification and Economic Use,
Edition 2. 1933. Out of Print.)
No. 5. An Illustrated Key to the Genera of the Foraminifera. 1933. $1.00
Foreign 1.50
No. 6. New Genera and Species of the Families Verneuiliimidae and Valvulini-
idae and of the Subfamily Virgulininae. 1936. .. 1.50
For continuation of this series, see back cover page.

Copies of Volume 25, part 2 were first mailed June 4, 1949

DORR'S PRINT SHOP, BRIDGEWATER, MASSACHUSETTS, U. S. A.
This Laboratory has suffered an irreparable loss in the death on April 16, 1949, of its founder and Director.

The work of the Laboratory will continue through the present year, carrying out to completion some of the works left unfinished at Dr. Cushman's death. The 25th volume of the Contributions will be the concluding volume and the 5-year index to vols. 21-25 will be published. In addition, a Memorial Volume to Dr. Cushman will be published. This will contain descriptions of his life's work, the history of the Laboratory, and the complete bibliography of his publications, nearly 550 in number.

Dr. Cushman willed all his collections, mounted and unmounted, his library, and his card catalog, and all the cases and cabinets containing these things to the Smithsonian Institution and they will eventually be transferred to the U. S. National Museum in Washington, D. C., and a room provided for them where they may be kept as a unit. They will be added to and kept up to date and made available for future workers on the Foraminifera.

It is hoped that a Cushman Memorial series of publications may be established, patterned after the Special Publication series from this Laboratory. This would be a series of faunal, ecologic, or monographic papers, in general too large for inclusion in one of the already-existing paleontologic journals, and of an irregular schedule of appearance.

It is with a very deep sense of loss, not only for the field of micropaleontology, but also in a personal way, that we shall carry on the work so well begun by our beloved master who for these 26 years worked with us and his host of students and colleagues from far and near as Director of this Laboratory, "and wist not that his face shone."

The Laboratory Staff
The present work contains the study of the species and varieties of *Globorotalia* found in Cuba in the uppermost Cretaceous and Tertiary and in the Recent seas that surround the island. Many of these species are good index fossils, not only in Cuba but also in other countries of the Antillean-Caribbean area. The geologic ranges of the various forms are indicated on the accompanying chart.

Apparently three groups of species can be established and these groups are probably phylogenetically distinct. These groups, which we believe worthy of subgeneric rank, are:

Globorotalia s. s.
- *G. tumida* (H. B. Brady)
- *G. menardii* (d'Orbigny)
- *G. menardii* (d'Orbigny), var. *multicamerata* Cushman and Jarvis
- *G. menardii* (d'Orbigny), var. *fimbriata* (H. B. Brady)
- *G. joehsi* Cushman and Ellisor
- *G. praemenardii* Cushman and Stainforth
- *G. capdevilensis* Cushman and Bermudez, n. sp.
- *G. membranacea* (Ehrenberg)
- *G. compressa* (Plummer)
- *G. lehneri* Cushman and Jarvis
- *G. palmerae* Cushman and Bermudez
- *G. albeari* Cushman and Bermudez, n. sp.

Globorotalia (*Truncorotalia*)
- *G. truncatulinoides* (d'Orbigny)
- *G. aragonensis* Nuttall
- *G. velascoensis* (Cushman)
- *G. wilcoxensis* Cushman and Ponton
- *G. wilcoxensis* Cushman and Ponton, var. *acuta* Toulmin
- *G. brödermanni* Cushman and Bermudez, n. sp.
- *G. hirsuta* (d'Orbigny)
GEODETICAL DISTRIBUTION OF THE CUBAN SPECIES OF GLOBOROTALIA

<table>
<thead>
<tr>
<th>GLOBOROTALIA</th>
<th>MIocene</th>
<th>Pliocene</th>
<th>Pliocene</th>
<th>Miocene</th>
<th>Eocene</th>
<th>Eocene</th>
<th>Upper Oligocene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FUSUCA (F. SMITH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. HETEROSPHERA (H. SMITH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. DECALOMA CUSIMANN & BENHIDEC (SP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. MACHAVIKI VAN FRIMANE (GRADO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. IHORADEIPOENIE (SHASHBY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. MACHAVIKI VAN MULTICENTRICA BEHMANN & JAFFES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. MACHAVIKI (PHRENOID)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. PHRENOID CUSIMAN & STEWART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. FORKH CUSIMAN & ELLISOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. MODERN CUSIMAN & ELLISOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. CERNOK-ADZISES (COLE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. CENTRALIS CUSIMAN & BEHNIDEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. LOMBER CUSIMAN & JAFFES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. CRASSER (CUSIMAN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. ANADESPODES (HOTALL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. CRASSER, VAR. CLINIA (CUSHMAN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. TALISTRE CUSIMAN & BEHNIDEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. BEHNIDEC (CUSIMAN) & BEHNIDEC (SP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. BEHNIDEC (CUSIMAN) & BEHNIDEC (SP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. EMINOSA CUSIMAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. ALBICHI CUSIMAN & BEHNIDEC (SP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. BEHNIDEC (CUSIMAN) & BEHNIDEC (SP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. MICHELSON (CUSIMAN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. VEILADESOPES (COLE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. MACHAVIKI (KEMPER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. COMpressed (KEMPER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
G. crassata (Cushman)
G. crassata (Cushman), var. aequa Cushman and Renz
G. crassata (Cushman), var. densa (Cushman)
G. spinulosa Cushman

Globoanatia (Turborotalia)
G. centralis Cushman and Bermudez
G. cerro-azulensis (Cole)
G. punctulata (d'Orbigny)
G. oceanica Cushman and Bermudez, n. sp.
G. mayeri Cushman and Ellisor

We are indebted to Mrs. Caridad V. Bermudez, wife of the junior author, who made the drawings illustrating the species.

Subgenus GLOBOROTALIA s. s.

Subgenotype, Pulvinulina menardii, var. tumida H. B. Brady

Test trochoid, biconvex and more or less compressed, periphery angular and becoming increasingly angular with growth of the test, umbilicus small and inconspicuous; chambers increasing in size but not in thickness as added.

GLOBOROTALIA TUMIDA (H. B. Brady) (Pl. 5, figs. 1-3)
Pulvinulina menardii (d'Orbigny), var. tumida H. B. Brady, Geol. Mag., dec. 2, vol. 4, 1877, p. 294.

Test large for the genus, biconvex, inflated ventrally, periphery rounded in the early stages, acute on the last few chambers, bordered by a limbate keel, umbilicus open; chambers fairly distinct, usually 6 in the last-formed whorl, flat on the dorsal surface, strongly inflated ventrally, rather rapidly increasing in size as added; sutures limbate and curved on the dorsal surface, distinctly incised and nearly radial on the ventral surface; wall distinctly perforate, with rather coarse papillae on the ventral surface surrounding the umbilicus; aperture a low, arched opening under the edge of the last-formed chamber, extending from the um-
biloculus nearly to the periphery. Length 1.00-1.15 mm.; breadth 0.90 mm.; thickness 0.55 mm.

The plesiotypes are from *Atlantis* sta. 2971, 810 fms., lat. 20° 34' N., long. 74° 24' W., north of Oriente Prov., Cuba.

GLOBOROTALIA MENARDII (d'Orbigny) (Pl. 5, figs. 4-6)

Test large for the genus, compressed, about equally biconvex, composed of 2½ to 3 whorls, periphery acute, becoming more so as chambers are added, umbilicus open; chambers distinct, 5 or 6 forming the last whorl, very slightly inflated on the ventral surface, rapidly increasing in size as added; sutures distinct, limbate and curved on the dorsal surface, distinctly incised and radial on the ventral surface; wall thin, distinctly and finely perforate, ornamented by the limbate dorsal sutures and a very prominent, rather blunt keel of clear shell material surrounding the periphery; aperture an arched opening under the edge of the last-formed chamber extending from the umbilicus nearly to the periphery, protected by an irregular lip. Length 1.00-1.15 mm.; breadth 0.90 mm.; thickness 0.35 mm.
This species has a wide geographic distribution and is very abundant in the deep and moderately deep deposits of the seas which surround Cuba. There are numerous records from the middle Oligocene to the Pleistocene.

The plesiotypes are from Atlantis sta. 3328, 260-275 fms., lat. 22° 08' N., long. 81° 10' W., Bahía de Cochinos, south of Cuba.

Globorotalia menardii (d'Orbigny), var. *fimbriata* (H. B. Brady)

This variety differs from the typical form in the highly spinose keel. This ornamentation continues in the middle of the dorsal surface as a fringing spinose border to the earlier whorl.

The plesiotype is from Atlantis sta. 3328, 260-275 fms., lat. 22° 08' N., long. 81° 10' W., Bahía de Cochinos, south of Cuba.

Globorotalia menardii (d'Orbigny), var. *multicamera* Cushman and Jarvis

Test small for the genus, thick, dorsal side somewhat less convex than the ventral side, periphery rounded on the earlier chambers, becoming acute but not keeled on the later chambers, umbilicus small, open; chambers 6 or 7 in the last-formed whorl, increasing rapidly in size and height...
as added, flat on the dorsal side, slightly inflated on the ventral side; sutures distinct, depressed and curved both dorsally and ventrally but indistinct between the earlier chambers; wall finely perforate, slightly spinose over the earlier whorls on the dorsal side and surrounding the umbilicus on the ventral side; aperture an elongate, low opening extending from the umbilicus under the edge of the last-formed chamber nearly to the periphery, protected by a prominent, projecting lip. Length 0.37-0.47 mm.; breadth 0.32-0.37 mm.; thickness 0.20 mm.

The plesiotypes are from the upper Oligocene, Cojimar formation, deep cut at Asilo Nacional de Ancianos, Casa Blanca, Habana Prov., Cuba (Bermudez sta. 518).

GLOBOROTALIA PRAEMENARDII Cushman and Stainforth

(Pl. 5, figs. 17-19; pl. 6, figs. 1-3)

Test of medium size for the genus, dorsal side slightly convex, especially in the early portion, flattened toward the periphery, ventral side more strongly convex, periphery lobulated, acute, with a narrow, blunt keel throughout, umbilicus open; chambers indistinct, 5 to 7 comprising the last whorl, flat on the dorsal side but distinctly inflated ventrally, gradually increasing in size as added; sutures limbate and curved on the dorsal side, distinctly incised and radial on the ventral side; wall finely perforate, smooth except for the limbate dorsal sutures and blunt peripheral keel; aperture a low, elongate opening under the edge of the last-formed chamber, extending from the umbilicus to the periphery. Length 0.50-0.62 mm.; breadth 0.40-0.50 mm.; thickness 0.20 mm.

The plesiotypes (figs. 17-19) are from the upper Oligocene, Cojimar formation, Finca El Junco, Limonar, Matanzas Prov., Cuba (Bermudez sta. 1196). The plesiotypes (figs. 1-3) are from the upper Oligocene, Cojimar formation, Yumuri gorge, Matanzas Prov., Cuba (Bermudez sta. 3).

GLOBOROTALIA PALMERAE Cushman and Bermudez (Pl. 6, figs. 4-6)

Test small for the genus, strongly compressed, composed of about 2 whorls, periphery acute, slightly keeled, and with prominent spines, umbilicus open; chambers distinct, 6 comprising the last whorl, not much increasing in size as added, slightly inflated on the ventral side; sutures
CONTRIBUTIONS FROM THE CUSHMAN LABORATORY

depressed and radial on both sides, spiral suture distinct, depressed; wall smooth, ornamented by the peripheral spines of clear shell material; aperture a low opening near the umbilical end of the ventral margin of the last-formed chamber. Length 0.32-0.37 mm.; breadth 0.30-0.32 mm.; thickness 0.10 mm.

The types of this species are from the lower beds of Tejar "Cuba," Arroyo Naranjo, Habana Prov., Cuba. These beds are in the lower Eocene, Capdevila Formation, where the species is a good index fossil. It is often associated with *Loxostomum applinae* (Plummer) and other typical species of the lower Eocene. The plesiotypes figured on our plate are topotypes from Bermudez sta. 235C.

GLOBOROTALIA LEHNERI Cushman and Jarvis (Pl. 6, figs. 7–9)

Test of medium size for the genus, compressed, periphery strongly indented, acute, surrounded by a thin spinose keel throughout; chambers 6 to 8 in the last whorl, not increasing in size as added, slightly inflated on the ventral side; sutures distinct, depressed and slightly curved on the dorsal side, radial and distinctly incised on the ventral side; wall finely perforate, smooth except finely granular over the earliest chambers and about the umbilicus, ornamented by a prominent spinose keel of clear shell material surrounding the periphery; aperture ventral, opening into the umbilicus. Diameter 0.45-0.50 mm.; thickness 0.20 mm.

The plesiotypes are from the lower part of the upper Eocene, San Luis formation, 2 km. SW. of Mir, Oriente Prov., Cuba (C 5210).

GLOBOROTALIA CAPDEVILENSES Cushman and Bermudez, n. sp. (Pl. 6, figs. 10–12)

Test minute, about equally biconvex, periphery acute but not keeled, umbilicus open; chambers indistinct, 5 or 6 in last-formed whorl, gradually increasing in size as added, flat on the dorsal side but distinctly in-

EXPLANATION OF PLATE 5

flated ventrally; sutures curved but indistinct on the dorsal side, radial and distinctly incised on the ventral side; wall thin, finely perforate, finely granular; aperture a low opening under the edge of the last-formed chamber, protected by a projecting lip. Length 0.17-0.20 mm.; breadth 0.15-0.17 mm.; thickness 0.10 mm.

Holotype (Cushman Coll. No. 47405) from the lower Eocene, Capdevila formation, N-dipping sandstone 250 meters N. of Tejar Retiro on road to Habana-Rancho Boyeros, Habana Prov., Cuba (Bermudez sta. 205).

This small species occurs frequently in numerous samples in the lower Eocene, Capdevila formation, where it is a good index fossil although easily overlooked because of its very small size. It differs from G. foehsi Cushman and Ellisor in its much smaller size, less inflated test, fewer chambers, and more distinct sutures on the ventral side.

GLOBOROTALIA ALBEARI Cushman and Bermudez, n. sp. (Pl. 6, figs. 13-15)

Test very small for the genus, strongly biconvex, dorsal side showing all the coils and ventral side only the last-formed whorl, periphery somewhat rounded; chambers not very distinct, 9 or 10 in the last-formed whorl, only slightly inflated ventrally, increasing very gradually in size as added; sutures fairly distinct but only slightly depressed except in the last whorl on the ventral side, rather strongly curved on the dorsal side; wall slightly spinose, coarsely perforate; aperture an elongate opening on the ventral side of the last-formed chamber extending from nearly the inner end to the periphery and with a distinct thin lip. Diameter 0.30-0.32 mm.; thickness 0.20 mm.

Holotype (Cushman Coll. No. 47413) from the Paleocene, Madruga formation, under bridge in the highway, Central San Antonio, Madruga, Habana Prov., Cuba (Bermudez sta. 76).

EXPLANATION OF PLATE 6

This species differs from *G. praemenardii* Cushman and Stainforth in its smaller size, more numerous chambers, more strongly biconvex test, and less umbilicate ventral side.

The species has been found only in samples of the Madruga formation where it is a good marker.

The species is named in honor of Ing. Jesús F. de Albear of the Cuban Geological Survey.

GLOBOROTALIA MEMBRANACEA (Ehrenberg) (Pl. 6, figs. 16-18)

Planulina membranacea Ehrenberg, Mikrogeologie, 1854, pl. 26, fig. 43 (not pl. 25, i, A, fig. 41).

Pulvinulinia membranacea Cushman, Bull. Amer. Assoc. Petr. Geol., vol. 10, 1926, p. 608, pl. 21, fig. 10.

Test of medium size for the genus, strongly compressed, periphery distinctly lobulate, acute throughout but not keeled, umbilicus large and open; chambers 5 or 6 in the last-formed whorl, very rapidly increasing in size as added, slightly inflated; sutures distinctly depressed on both dorsal and ventral sides, curved on the dorsal side and radial on the ventral side; wall smooth and finely perforate throughout; aperture an elongate opening under the edge of the last-formed chamber, extending from the umbilicus to the periphery, protected by a narrow, projecting lip. Length 0.82-0.87 mm.; breadth 0.45-0.47 mm.; thickness about 0.17 mm.

This species has been recorded in the Upper Cretaceous, Velasco formation, of Mexico, and has also been found in the beds of Navarro and Taylor age in Texas. In Florida the species is considered as a good index fossil for the Paleocene. We have found this species abundant in the Paleocene, Madruga formation, of Cuba and also in numerous samples of the Upper Cretaceous, Habana formation. The species is found frequently associated with *G. velascoensis* (Cushman). The plesiotypes are from the Paleocene, 200 meters N. of Cerro Avenue on road to Rancho Boyeros, Habana Prov., Cuba (Bermudez sta. 530).

GLOBOROTALIA COMPRESSA (Plummer) (Pl. 6, figs. 19-21)

Globigerina compressa Plummer, Univ. Texas Bull. 2644, 1926 (1927), p. 135, pl. 8, fig. 11.—Jennings, Bull. Amer. Pal., vol. 23, No. 78, 1936, p. 35, pl. 4, fig. 8.—Glaess-
Nov., Problems of Paleontology, Moscow Univ., vols. 2-3, 1937, p. 382, pl. 4, fig. 32.—
Toulmin, Journ. Pal., vol. 15, 1941, p. 607, pl. 82, figs. 1, 2.—Cushman and Todd, Contr. Cushman Lab. Foram. Res., vol. 18, 1942, p. 44, pl. 8, figs. 5, 6.—Kline, Bull. 53, Mississippi State Geol. Survey, 1943, p. 58, pl. 6, figs. 5, 6.

Test of medium size for the genus, composed of about 2 whorls, periphery strongly lobulate, smoothly rounded throughout, umbilicus large and open; chambers globular, 5 in the last-formed whorl, increasing rather rapidly in size as added; sutures radial and distinctly depressed throughout; wall smooth and finely perforate; aperture a low, elongate opening under the ventral edge of the last-formed chamber. Diameter 0.40-0.57 mm.; thickness 0.27 mm.

This species was originally described from the upper Midway of Texas and has been reported from numerous localities in the Paleocene and Eocene of Texas, Mississippi, Alabama, and New Jersey. In Cuba the species is rare in the Paleocene, Madruga formation. The plesiotypes are from the Paleocene, water well 200 meters N. of Cerro Avenue on Rancho Boyeros road, Habana Prov., Cuba (Bermudez sta 530).

Subgenus TRUNCOROTALIA Cushman and Bermudez, n. subgen.

Subgenotype, Rotalina truncatulinoides d'Orbigny

Test planoconvex, thick, dorsal side flattened, ventral side sharply conical except for a large open umbilicus surrounded by the raised knobs of the inner ends of the chambers on the ventral side, periphery angular throughout; chambers not much increasing in size but rapidly in thickness as added, ventral face of the last-formed chamber above the aperture forming a concave surface.

GLOBOROTALIA (TRUNCOROTALIA) TRUNCATULINOIDES (d'Orbigny)

(Pl. 6, figs. 22-24)

Pulvinulina truncatulinoides Cushman, Bull. 100, U. S. Nat. Mus., vol. 4, 1921, p. 339, pl. 67, fig. 2.

CONTRIBUTIONS FROM THE CUSHMAN LABORATORY

Test large for the genus, conical, composed of about 2 whorls, periphery acute and very bluntly keeled, dorsal side flat or slightly concave, ventral side conical with a deep, open umbilicus; chambers indistinct, about 6 in the last-formed whorl, very slightly increasing in size but rapidly in thickness as added, not inflated; sutures indistinct, curved-tangential on the dorsal side, radial or slightly curved on the ventral side; wall thin, translucent, finely perforate, ornamented by small papillae surrounding the umbilicus and fine granulations covering the earliest chambers on the dorsal side; aperture a low, elongate, arched opening at the base of the last-formed chamber, about midway between the umbilicus and the periphery. Length 0.72-0.85 mm.; breadth 0.62 mm.; thickness 0.62 mm.

This species is very abundant in Globigerina oozes, being a typical species of pelagic deposits. There are many records in the Recent but few as a fossil. Mrs. Palmer found it in the Bowden formation of Jamaica which is middle Miocene in age.

The plesiotypes are from Atlantis sta. 2980, 250 fms., lat. 22° 47’ N., long. 78° 40’ W., off North Cuba.

GLOBOITALIA (TRUNCORITALIA) HIRSUTA (d’Orbigny) (Pl. 7, figs. 1-3)

Test of medium size for the genus, composed of 2½ whorls, more strongly convex on the ventral side than on the dorsal, periphery bluntly acute throughout; chambers 4 in the adult whorl, rapidly increasing in size as added, individual chambers elongate and narrow on the dorsal side; sutures strongly curved and limbate on the dorsal side, radial and deeply incised on the ventral side; wall thin, finely perforate, finely spinose; aperture a narrow, arched opening under the edge of the last-formed chamber, nearer to the periphery than to the umbilicus, surrounded by a very narrow lip. Length 0.55-0.60 mm.; breadth 0.47-0.52 mm.; thickness 0.30 mm.

This species is abundant in the Atlantic from the coast of Carolina to the British Isles. We do not have any record in the seas near Cuba, although it has been found in the waters off Florida. The species is par-
particularly abundant in the Pliocene, Matanzas formation, of Cuba. The plesiotypes are from the Pliocene, Matanzas formation, 800 meters from the mouth of rio Canimar, Matanzas Prov., Cuba (Bermudez sta. 218, type locality of the Matanzas formation).

Globorotalia (Truncorotalia) crassata (Cushman) (Pl. 7, figs. 4-6)

Pulvinulina crassata Cushman, Bull. Amer. Assoc. Petr. Geol., vol. 9, 1925, p. 300, pl. 7, fig. 4.

—Cushman and Barksdale, Contr. Dept. Geol., Stanford Univ., vol. 1, No. 1, 1930, p. 67, pl. 12, fig. 7.—Howe, Geol. Bull. 14, Louisiana Geol. Survey, 1939, p. 84, pl. 12, figs. 7-9.—Cushman, Contr. Cushman Lab. Foram. Res., vol. 15, 1939, p. 74, pl. 12, fig. 19.—Cushman and Applin, l. c., vol. 19, 1943, p. 44, pl. 8, fig. 10.—Cushman and Renz, l. c., Special Publ. 24, 1948, p. 40, pl. 8, figs. 5, 6.

Test of medium size for the genus, dorsal side flat, ventral side truncated-conical, with a large, open umbilicus, periphery strongly indented, bluntly angular but not keeled; chambers distinct, 5 or 6 in the last-formed whorl, not much increasing in size or thickness as added, not inflated; sutures distinctly depressed on both sides, tangential on the dorsal side, radial on the ventral side; wall thickly covered by heavy spines throughout; aperture elongate, on the inner edge of the ventral face of the last-formed chamber. Length 0.45 mm.; breadth 0.40 mm.; thickness 0.25 mm.

The plesiotypes are from the lower part of the upper Eocene, San Luis formation, 2 km. SW. of Mir, Oriente Prov., Cuba (C 5210).

Globorotalia (Truncorotalia) crassata (Cushman), var. *aequa* Cushman and Renz (Pl. 7, figs. 7-9)

This variety differs from the typical form in the less coarse ornamentation, in the chambers being broader and more arcuate and 4 in number instead of 5 or 6 in the last-formed whorl, and in the sutures being less deeply depressed on the dorsal side, resulting in a more compact test. Length 0.60 mm.; breadth 0.45 mm.; thickness 0.30 mm.

This variety seems to be limited to the Paleocene where it has been found in various samples. The plesiotypes are from the Paleocene, south end of cut through marlstone, in abandoned road, 100-150 meters S. of narrow gage railroad tracks on trail leading SW. from east edge of San Ramón, some 900 meters slightly W. of S. of Carretera San Ramón, Pinar del Rio Prov., Cuba (Bermudez sta. 536).
CONTRIBUTIONS FROM THE CUSHMAN LABORATORY

GLOBOROTALIA (TRUNCOROTALIA) CRASSATA (Cushman), var. DENSIA (Cushman)
(Pl. 7, figs. 10-12)

This variety differs from the typical form in the slightly less coarse ornamentation, the fewer chambers in the adult whorl, the more rounded periphery, and the proportionately thicker test. Length 0.45 mm.; breadth 0.40 mm.; thickness 0.30 mm.

This form has been found in numerous samples of the lower Eocene. The plesiotypes are from the lower Eocene, 850 meters NW. of Peñón, 7 km. S. of Marti, Matanzas Prov., Cuba (Bermudez sta. 110). This locality was originally considered early middle Eocene but more recent studies have shown that it ought to be placed in the lower Eocene, in fact probably in the same horizon as the Capdevila formation.

GLOBOROTALIA (TRUNCOROTALIA) ARAGONENESIS Nuttal (Pl. 7, figs. 13-15)

Test planoconvex, dorsal side flat or very slightly convex in the middle, ventral side strongly convex with a large open umbilicus; in some cases with a flattened area immediately inside the periphery on the ventral side, resulting in a flanged test, periphery acute and keeled; chambers indistinct, 6 or 7 in the last-formed whorl, not increasing in size as added, the ventral face of the last-formed chamber forming a concave surface; sutures indistinct except the last few on the ventral side which are incised and radial; wall finely perforate, covered with rather coarse granulations which are more distinct over the earliest chambers on the dorsal side and around the umbilicus on the ventral side, the peripheral keel sometimes slightly spinose; aperture an elongate slit at the base of the last chamber extending from the umbilicus to near the periphery. Length 0.50-0.75 mm.; breadth 0.42-0.60 mm.; thickness 0.37-0.45 mm.

This species somewhat resembles "Rotalina boueana d'Orbigny," "Truncatulina insignis Reuss," and "Discorbina elegans Hantken," from
FOR FORAMINIFERAL RESEARCH

all of which it differs in being thicker. It more closely resembles *Globorotalia velascoensis* (Cushman) but differs in having a shallower umbilicus and a more convex dorsal surface and in its ornamentation being of a coarser texture.

The species was described from the Aragon formation and also reported from the Chicontepec formation, both formations of lower Eocene age in the Tampico region, Mexico. In Cuba the species is very abundant in the Universidad formation which is the very high part of the lower Eocene. It is also found in the Capdevila formation, which is below the lower Eocene, but is less abundant and the specimens in general are very small. The species has also been found in the Abuillot formation of lower Eocene age of Haiti and San Domingo. The plesiotypes are from the upper part of the lower Eocene, Universidad formation, Avenida de los Presidentes, Vedado, Habana, Cuba (Bermudez sta. 20).

GLOBOROTALIA (TRUNCOROTALIA) WILCOXENSIS Cushman and Ponton

(*Pl. 7, figs. 16-18*)

Test rather small for the genus, planoconvex, dorsal side flat or slightly convex in the middle, ventral side sharply convex but with an open umbilicus, periphery acute but not keeled; chambers narrow, oblique and oblique on the dorsal side, 4½ to 5 comprising the last-formed whorl, increasing rapidly in thickness and inflation ventrally so that the umbilicus is surrounded by a series of raised knobs; sutures distinct, tangential on the dorsal side, radial and deeply depressed on the ventral side; wall covered thickly by very fine, sharp spines; aperture a semicircular opening toward the umbilical end of the ventral side of the last-formed chamber. Diameter 0.33-0.42 mm.; thickness 0.22 mm.

The plesiotypes are from the Paleocene, 200 meters N. of Cerro Avenue on road to Rancho Boyeros, Habana Prov., Cuba (Bermudez sta. 530).

GLOBOROTALIA (TRUNCOROTALIA) WILCOXENSIS Cushman and Ponton, var. ACUTA Toulmin (*Pl. 7, figs. 19-21*)

This variety differs from the typical form in the more sharply angled
periphery, the more rapid increase in thickness of the test, and the lack of the fine, sharp spines on the surface.

The pleisiotypes are from the Paleocene, 3.5 kms. W. of Madruga, Habana Prov., Cuba (Bermudez sta. 75).

GLOBOROTALIA (TRUCOROTALIA) BRÖDERMANNI Cushman and Bermudez, n. sp.
(Pl. 7, figs. 22-24)

Test of small size for the genus, thick and compact, composed of about 2 whorls, about equally biconvex, periphery rounded and blunt, umbilicus large and open; chambers indistinct, about 6 in the last-formed whorl, very gradually increasing in size as added, slightly inflated; sutures depressed, curved on the dorsal side and radial on the ventral side; wall covered by thick, short, coarse spines; aperture a narrow, low opening under the ventral edge of the last-formed chamber, without a lip. Length 0.33 mm.; breadth 0.28 mm.; thickness 0.18 mm.

Holotype (Cushman Coll. No. 47407) from the lower Eocene, Capdevila formation, .5 km. S. of Capdevila, Habana Prov., Cuba (Bermudez sta. 349).

This species resembles *G. albeari* n. sp., particularly in dorsal view. It differs, however, in its large, open umbilicus and its less acute periphery.

G. brödermanni is found only in the Capdevila formation of the lower Eocene where it is a good index fossil.

The species is named in honor of Ing. Jorge Brödermann, Director del Mapa Geológico de Cuba.

GLOBOROTALIA (TRUCOROTALIA) SPINULOSA Cushman (Pl. 8, figs. 1-3)

EXPLANATION OF PLATE 7

Test rather attenuated, dorsal side convex in the middle but the surface of the last-formed whorl flat, ventral side strongly convex with the inner points of each chamber rising as knobs surrounding the open umbilicus, periphery lobulated, sharply acute throughout and surrounded by a spinose keel; chambers indistinct in the earlier whorl, last whorl composed of 4 chambers, very rapidly increasing in size as added, somewhat inflated on the ventral side; sutures indistinct on the dorsal side, distinctly depressed and radial on the ventral side; wall finely perforate, covered by fine, low spines; aperture a rather high, arched, narrow opening midway between the umbilicus and the periphery, at the base of the last-formed chamber. Length 0.38-0.42 mm.; breadth 0.30-0.35 mm.; thickness 0.25 mm.

The plesiotypes are from the lower Eocene, 7.5 kms. W. of Madruga on the highway, Habana Prov., Cuba (Bermudez sta. 97).

GLOBOROTALIA (TRUNCOROTALIA) VELASCOENSIS (Cushman) (Pl. 8, figs. 4-6)
Globorotalia velascoensis CUSHMAN, Journ. Pal., vol. 1, 1927, p. 169, pl. 27, figs. 7-9.—

Test planoconvex, dorsal side flat or very slightly convex in the middle, ventral side strongly convex with a large, open umbilicus surrounded by the raised knobs formed by the inner ends of the chambers, periphery acute throughout, keeled, ventral side of the test with a depressed area inside the periphery appearing to increase the width of the keel; chambers indistinct on the dorsal side except in the last whorl, 6 or 7 chambers comprising the last-formed whorl, not much increasing in size or...
CONTRIBUTIONS FROM THE CUSHMAN LABORATORY

thickness as added; sutures indistinct, slightly depressed, curved and tangential on the dorsal side, very deeply incised and radial or slightly curved on the ventral side; wall covered throughout by a fine spinosity becoming more conspicuous on the peripheral keel; aperture an elongate, narrow opening under the ventral edge of the last-formed chamber. Length 0.40-0.50 mm.; breadth 0.35-0.40 mm.; thickness 0.25 mm.

The species was described from the Upper Cretaceous, Velasco formation, of Mexico and has been reported in the Upper Cretaceous of Trinidad and the Paleocene of Florida. In Cuba it has been found in the higher beds of the Upper Cretaceous, Habana formation, and in the Paleocene, Madruga formation. The plesiotypes are from the Paleocene, 200 meters N. of Cerro Avenue on the road to Rancho Boyeros, Habana Prov., Cuba (Bermudez sta. 530).

Subgenus TURBOROTALIA Cushman and Bermudez, n. subgen.

Subgenotype, Globorotalia centralis Cushman and Bermudez

Test globular and thick, periphery rounded and becoming more rounded with growth of the test, no definite umbilicus; chambers not much increasing in size but rapidly in thickness as added.

Globorotalia (Turborotalia) Punctulata (d'Orbigny) (Pl. 8, figs. 7-9)

Globorotalia punctulata Cushman, Contr. Cushman Lab. Foram. Res., vol. 17, 1941, p. 41, pl. 10, figs. 24, 25; pl. 12, fig. 1.—Cushman and Todd, I. c., Special Publ. 15, 1945, p. 68, pl. 11, fig. 18.

Test of medium size for the genus, subglobular, composed of 2½ to 3 whorls, dorsal side nearly flat, ventral side strongly convex; chambers indistinct, 4 comprising the last whorl, not increasing in size but rapidly in thickness as added, inflated, especially ventrally; sutures distinct, depressed, straight and radial on the dorsal side, distinctly incised and radial on the ventral side; wall smooth, finely perforate, polished except on the earlier chambers on the ventral side surrounding the aperture where it is granular; aperture a large, arched opening under the edge of the last-formed chamber, extending from the umbilicus to the periphery, with the adjacent wall of the last-formed chamber immediately above the aperture being smooth and polished. Diameter 0.50-0.60 mm.; thickness 0.50 mm.

The plesiotypes are from Atlantis sta. 3374, 300 fms., lat. 20° 45' N., long. 75° 19' W., north of Oriente Prov., Cuba.

Globorotalia (Turborotalia) Cerro-Azulensis (Cole) (Pl. 8, figs. 10-13)

Test of medium size for the genus, dorsal side slightly convex in the middle, surface of the last whorl flat, ventral side strongly inflated, umbilicus not open, periphery bluntly acute around the earlier chambers, later becoming rounded; chambers 4 in the last-formed whorl, not much increasing in size but rapidly in thickness as added, long and narrow on the dorsal side, globular and inflated ventrally; sutures curved, tangential and slightly depressed on the dorsal side, depressed and radial on the ventral side; wall finely perforate and finely granular; aperture a high, arched, narrow opening under the ventral edge of the last-formed chamber, slightly in from the periphery. Diameter 0.55-0.60 mm.; thickness 0.38 mm.

This species resembles G. cocoaensis Cushman but is a generally larger and more robust form and is more inflated on the ventral side. It was originally described from the upper Eocene, Chapapote formation of Mexico. In Cuba it is a good index fossil for the upper Eocene, Guantánamo and Consuelo formations. The plesiotypes are from the upper Eocene, N. of grua 9, Ramal Juan Criollo of Central Jatibonico, Camagüey Prov., Cuba (Bermudez sta. 481).

GLOBOROTALIA (TURBOROTALIA) OCEANICA Cushman and Bermudez, n. sp.

(Pl. 8, figs. 13-15)

Test of medium size for the genus, dorsal side nearly flat, ventral side strongly convex but with an open umbilicus, periphery bluntly angled around the earlier chambers, later becoming rounded; chambers 4 in the last-formed whorl, very little increasing in size but rapidly in thickness as added; sutures slightly depressed, tangential and slightly curved on the dorsal side, incised and radial on the ventral side; wall thin, very finely perforate, smooth except slightly granular over the earliest chambers on the dorsal side and with thick spinose projections on the three earlier chambers surrounding the umbilicus; aperture a low, elongate opening under the ventral edge of the last-formed chamber, extending nearly from the umbilicus to the periphery and overhung by a very narrow, thin lip. Diameter 0.50-0.65 mm.; thickness 0.37 mm.

Holotype (Cushman Coll. No. 47387) from Atlantis sta. 2980, 250 fms., lat. 22° 47' N., long. 78° 40' W., north coast of Cuba.

This species differs from G. (T.) punctulata (d'Orbigny) in its more
angular periphery, larger and more open umbilicus, and the very low, elongate aperture.

GLOBOROTALIA (TURBOROTALIA) MAYERI Cushman and Ellisor

Test small for the genus, thick but about equally inflated on both sides, periphery lobulated, rounded throughout, umbilicus open; chambers indistinct, 5 or 6 in the last-formed whorl, inflated and rather gradually increasing in size as added; sutures indistinct on the dorsal side, incised and radial on the ventral side; wall very coarsely perforate; aperture a large, arched opening under the ventral edge of the last-formed chamber, extending nearly from the umbilicus to the periphery and bordered by a distinct, thin rim. Diameter 0.33-0.37 mm.; thickness 0.20-0.22 mm.

This species is found in the upper middle to uppermost Oligocene, frequently associated with *G. foehsi* Cushman and Ellisor. The plesiotypes are from the upper Oligocene, upper Cojimar formation, Finca El Junco, Limonar, Matanzas Prov., Cuba (Bermudez sta. 1196).

GLOBOROTALIA (TURBOROTALIA) CENTRALIS Cushman and Bermudez

Test subglobular, inflated, composed of about 2½ whorls, dorsal side flat or slightly convex, ventral side strongly convex, periphery bluntly angled around the first chambers, later becoming rounded; chambers 5 in the last-formed whorl, increasing rapidly in size and very rapidly in thickness as added, ventral face of last-formed chamber concave above the aperture; sutures distinct, depressed, straight and tangential on the dorsal side, more deeply depressed and radial on the ventral side; wall finely perforate, covered by a fine spinosity which becomes coarser surrounding the umbilical area; aperture very large for the genus, a high, arched opening, extending from the umbilicus to the periphery and bordered by a narrow lip. Diameter 0.50-0.65 mm.; thickness 0.40-0.50 mm.

This species was originally described from the lower part of the upper Eocene, Jicotea formation, Cuba, where it is very abundant and a good marker for this horizon. It has also been found in the San Luis and
Jabaco formations in the lower part of the upper Eocene and in the Loma Candela formation of the middle Eocene. The record of *Globigerina inflata* d’Orbigny (Cole, Bull. Amer. Pal., vol. 14, No. 51, 1927, p. 33, pl. 4, fig. 19) from the Guayabal formation of Mexico is probably this species. The figures accompanying Howe’s record from the Cook Mountain Eocene of Louisiana correspond very closely to the Cuban specimens. Our plesiotypes are from the lower part of the upper Eocene, Jabaco formation, Cantera (quarry) Punta Brava, in the vicinity of Punta Brava village, Habana Prov., Cuba (Bermudez sta. 464).

RECENT LITERATURE ON THE FORAMINIFERA

Below are given some of the more recent works on the foraminifera that have come to hand:

Emiliani, Cesare. Su Due Microfaune Contenute nelle “Argille Scagliose” di Castel dell’Alpi (Bologna).—L. c., No. 2, pp. 75-77.—Lists foraminifera.

Martinis, Bruno. Sulla Presenza del Pliocene Marino nel Sottosuolo di Albino (Prealpi Bergamasche).—L. c., No. 2, pp. 78-86, text fig. 10.—Lists foraminifera.

Petters, Victor, and Rolando Gandolfi. Contributo alla Conoscenza dei Foraminiferi Oligocene nel Versante Nord dell’Appennino Settentrionale (Fam. Rotaliidae e Anomal influentes).—L. c., No. 3, pp. 97-116, pl. I, text fig. 16 and range chart.—Sixteen species, 1 new, and 1 new variety are described and figured.

Foraminiferal Thanatocoenoses of Ago Bay, Kii Peninsula, Japan.—L. c., No. 8, Dec. 1948, pp. 111-117, charts 1, 2.—Occurrence and relative abundance of species in different parts of the bay are studied.

Oinomikado, T., and Leo W. Stach. Recent Shallow Water Foraminiferal Assemblages from Niigata Prefecture, Japan.—L. c., pp. 104-110, text fig. 1 (graph).—A distribution table of numerous species is given.

Muraour, Pierre. Sur la présence d’une nouvelle espèce de *Siphonodosaria* dans la molasse astienne d’Alger.—L. c., séance du 21 juin 1948, pp. 250, 251, text figs. A-C.

Sur l’existence d’une cloison médiane chez certaines formes enroulées de Lagenidae.—C. R. S. Acad. Sci., vol. 228, séance du 31 janvier 1949, pp. 419, 420, text figs. 1, 2.

di Napoli Alliata, Enrico. La Micropaleontologia Applicata allo Studio dei Problemi Geopetroliferi della Pianura Padana.—Riv. Tecnica “Metano,” No. 12, Dec. 1948, pp. 1-5, 1 text fig.—Includes a graph of a statistical study of *Uvigerina peregrina*.

Israelsky, Merle C. Oscillation Chart.—Bull. Amer. Assoc. Petr. Geol., vol. 33, No. 1, Jan. 1949, pp. 92-98, text figs. 1-3, chart.—Foraminifera are used in making the chart.

Woodring, W. P., and T. F. Thompson. Tertiary Formations of Panama Canal Zone and Adjoining Parts of Panama.—L. c., No. 2, Feb., 1949, pp. 223-247, text figs. 1, 2 (map and chart).—Various species of foraminifera are noted.

Moore, Raymond C., and M. L. Thompson. Main Divisions of Pennsylvanian Period and System.—L. c., No. 3, March, 1949, pp. 275-302, text figs. 1, 2.—Ranges of fusulinid genera are shown.

Hussey, Keith M. Louisiana Cane River Eocene Foraminifera.—Journ. Pal., vol. 23, No. 2, March, 1949, pp. 109-144, pls. 25-29.—One hundred twenty-one species, 77 new, and 1 new variety, are described or noted and most of them figured.
CONTRIBUTIONS FROM THE CUSHMAN LABORATORY

Thompson, M. L. The Permian Fusulinids of Timor.—L. c., pp. 182-192, pls. 34-36, text fig. 1.—Five species, 1 new, are described and illustrated.

Hanzawa, Shoshiro. A new type of the fusulinid Foraminifera from Central Japan.—L. c., pp. 205-209, pl. 43, text figs. 1-3.—A new subgenus and a new species are figured and described.

Morishima, Masao. A new Miocene Lepidocyclina from Shizuoka Prefecture, Japan.—L. c., pp. 210-213, pls. 44, 45, text fig. 1 (section).—A new species is described and figured.

Tromp, S. W. The Value of Globigerinidae Ratios in Stratigraphy.—L. c., pp. 223, 224.—Frequency ratios of genera can be used for local correlations.

Newell, Norman D. Geology of the Lake Titicaca Region, Peru and Bolivia.—Mem. 36, Geol. Soc. Amer., March 28, 1949, pp. 1-111, pls. 1-21, text figs. 1-14.—Fusulinid foraminifera are mentioned.

Layer, D. B., and Members of Staff, Imperial Oil Limited. Leduc Oil Field, Alberta, a Devonian Coral-Reef Discovery.—Bull. Amer. Assoc. Petr. Geol., vol. 33, No. 4, April 1949, pp. 572-602, pls. 1, 2, text figs. 1-8.—Foraminifera are listed from the Cretaceous.

Shiflet, Elaine. Eocene Stratigraphy and Foraminifera of the Aquia Formation.—Bull. 3, Maryland Dept. Geol., Mines and Water Resources, 1948 (1949), pp. 1-93, pls. 1-5, text figs. 1-21 (maps, charts, sections, table). —Eighty-nine species and varieties of foraminifera are recorded and most of them described and figured, 6 species and 1 variety new.

Boomgaard, L. Smaller Foraminifera from Bodjonegoro (Java). Thesis Univ. Utrecht, 1949, pp. 1-175, pls. I-XIV, text figs. 1-3, tables 1-7, distribution chart.—Two hundred ninety-two species and varieties are recorded and most of them described and illustrated from well drillings of Pliocene to Miocene age. Thirty species and ten varieties are new and there are 3 new names and one new genus, Pseudonodosaria (genotype Glandulina discreta Reuss).
<table>
<thead>
<tr>
<th>Special Publ. No.</th>
<th>Title</th>
<th>Pages</th>
<th>Plates</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>A Monograph of the Foraminiferal Family Verneuilinidae.</td>
<td>170</td>
<td>20</td>
<td>$3.50</td>
</tr>
<tr>
<td>8</td>
<td>A Monograph of the Foraminiferal Family Valvulinidae.</td>
<td>210</td>
<td>24</td>
<td>$4.00</td>
</tr>
<tr>
<td>9</td>
<td>A Monograph of the Subfamily Virgulininae.</td>
<td>240</td>
<td>24</td>
<td>$4.00</td>
</tr>
<tr>
<td>10</td>
<td>The Genus Articulina and Its Species.</td>
<td>21</td>
<td>4</td>
<td>$1.00</td>
</tr>
<tr>
<td>11</td>
<td>The Genus * Spiroloculina* and Its Species.</td>
<td>82</td>
<td>9</td>
<td>$1.50</td>
</tr>
<tr>
<td>12</td>
<td>Foraminifera from the Shallow Water of the New England Coast.</td>
<td>37</td>
<td>4</td>
<td>$1.00</td>
</tr>
<tr>
<td>13</td>
<td>The Species of Foraminifera Recorded by d'Orbigny in 1826 from the Pliocene of Castel Arquato, Italy.</td>
<td>27</td>
<td>6</td>
<td>$0.50</td>
</tr>
<tr>
<td>14</td>
<td>Foraminifera of the Cipero Marl Formation of Trinidad, British West Indies.</td>
<td>91</td>
<td>16 plates and 2 charts</td>
<td>$1.50</td>
</tr>
<tr>
<td>15</td>
<td>Miocene Foraminifera from Buff Bay, Jamaica.</td>
<td>85</td>
<td>12</td>
<td>$1.00</td>
</tr>
<tr>
<td>16</td>
<td>A Rich Foraminiferal Fauna from the Cocoa Sand of Alabama.</td>
<td>40</td>
<td>8</td>
<td>$0.75</td>
</tr>
<tr>
<td>17</td>
<td>The Species of Foraminifera Named and Figured by Fichtel and Moll in 1798 and 1803.</td>
<td>16</td>
<td>4 plates</td>
<td>$0.50</td>
</tr>
<tr>
<td>17A</td>
<td>A Supplement to the Monograph of the Foraminiferal Family Verneuilinidae.</td>
<td>43</td>
<td>4</td>
<td>$0.50</td>
</tr>
<tr>
<td>18</td>
<td>Foraminiferal Fauna of the Lizard Springs Formation of Trinidad, British West Indies.</td>
<td>48</td>
<td>8 plates</td>
<td>$1.00</td>
</tr>
<tr>
<td>19</td>
<td>Foraminiferal Fauna from the Pliocene of Timms Point, California.</td>
<td>46</td>
<td>8</td>
<td>$0.75</td>
</tr>
<tr>
<td>8A</td>
<td>A Supplement to the Monograph of the Foraminiferal Family Valvulinidae.</td>
<td>69</td>
<td>8</td>
<td>$1.00</td>
</tr>
<tr>
<td>20</td>
<td>An Eocene Foraminiferal Fauna from the Chira Shale of Peru.</td>
<td>27</td>
<td>4</td>
<td>$0.50</td>
</tr>
<tr>
<td>21</td>
<td>Foraminifera from the Coast of Washington.</td>
<td>23</td>
<td>4</td>
<td>$0.50</td>
</tr>
<tr>
<td>22</td>
<td>Foraminifera of the Oligocene, Ste. Croix Formation, of Trinidad, B. W. I.</td>
<td>46</td>
<td>8 plates</td>
<td>$1.00</td>
</tr>
<tr>
<td>23</td>
<td>Arctic Foraminifera.</td>
<td>79</td>
<td>8</td>
<td>$1.50</td>
</tr>
<tr>
<td>24</td>
<td>Eocene Foraminifera of the Navet and Hospital Hill Formations of Trinidad, B. W. I.</td>
<td>42</td>
<td>8 plates</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

Price list of available foraminiferal literature sent on request.

ORDER FROM MISS ALICE E. CUSHMAN
76 BROOK ROAD, SHARON, MASS., U.S.A.

FORAMINIFERA
Their Classification and Economic Use
NEW FOURTH EDITION, REVISED AND ENLARGED